Code for project 4
Load the R packages
Download \(CO_2\) emissions per capita from Our world in Data into directory.
Assign the location of the file to file_csv
. The data should be in the same directory as this file
read the data into R and assign it to emmisions
Show the First 10 rows (observations of) emissions
emissions
# A tibble: 23,307 x 4
Entity Code Year `Annual CO2 emissions (per capita)`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# ... with 23,297 more rows
Start with emissions
data THEN
-use clean_names
from the janitor package -assign the output to tidy_emissions
-show the first 10 rows of tidy_emissions
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 23,307 x 4
entity code year annual_co2_emissions_per_capita
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# ... with 23,297 more rows
Start with the tidy_emissions
THEN -use filter
to extracr rows with year == 2018
THEN -use skim
to calculate the descriptive statistics
Name | Piped data |
Number of rows | 229 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 229 | 0 |
code | 12 | 0.95 | 3 | 8 | 0 | 217 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 2018.00 | 0.00 | 2018.00 | 2018.00 | 2018.0 | 2018.00 | 2018.00 | ▁▁▇▁▁ |
annual_co2_emissions_per_capita | 0 | 1 | 5.03 | 5.63 | 0.03 | 0.99 | 3.5 | 6.85 | 38.44 | ▇▂▁▁▁ |
12observations have a missing code, how are these different? -start with tidy_emissions then extract rows with year == 2018 and are missing a code
# A tibble: 12 x 4
entity code year annual_co2_emissions_per_ca~
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 2018 1.09
2 Asia <NA> 2018 4.44
3 Asia (excl. China & India) <NA> 2018 4.14
4 EU-27 <NA> 2018 6.85
5 EU-28 <NA> 2018 6.70
6 Europe <NA> 2018 7.48
7 Europe (excl. EU-27) <NA> 2018 8.39
8 Europe (excl. EU-28) <NA> 2018 9.15
9 North America <NA> 2018 11.4
10 North America (excl. USA) <NA> 2018 4.80
11 Oceania <NA> 2018 11.4
12 South America <NA> 2018 2.58
Start with tidy_emissions THEN -use filter
to extract rows with year == 2019 and without missing codes THEN -useselect
to drop the year
variable -use rename
to change the variable entity
to country
-assign the output to emissions_2019
Which 15 countries have the highestper_capita_co2_emissions
? -Start with emissions_2019
THEN -use slice_max
to extract the 15 rows with the per_capita_co2_emissions
-assign output to max_15_emitters
Which 15 countries have the lowest per_capita_co2_emissions
? -start with emissions_2019
THEN -use slice_min
to extract the 15 rows with lowest values -assign the output to min_15_emitters
Use bind_rows
to bind together the max_15_emitters
and min_15_emitters
-assign the output to max_min_15
max_min_15 <- bind_rows(max_15_emitters,min_15_emitters)
Read the 3 file formats into R
max_min_15_csv <- read_csv("max_min_15.csv")
max_min_15_tsv <- read_tsv("max_min_15.tsv")
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|")
Use setdiff to check for differences in max_min_, max_min_15_csv, and max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
# annual_co2_emissions_per_capita <dbl>
Any differences?
16 Plot max_min_15_plot_data
18 Add preview.png to yaml chuck at the top of this file
preview: preview.png